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Abstract. The problem of maintaining gauge invariance when truncating the two-particle irreducible (2PI)
effective action has been studied recently by several authors. Here we give a simple and very general
derivation of the gauge dependence identities for the off-shell 2PI effective action. We consider the case
where the gauge is fixed by an arbitrary function of the quantum gauge field, subject only to the restriction
that the Faddeev–Popov matrix is invertible. We also study the background field gauge. We address the
role that these identities play in solving gauge invariance problems associated with physical quantities
calculated using a truncated on-shell 2PI effective action.

1 Introduction

Considerable progress has been achieved in the study of
the dynamics of quantum fields in and out of equilibrium.
Collective effects and long range interactions are intrinsic
to deconfined QCD matter in heavy ion collisions. At equi-
librium, the hard thermal loop effective theory is the ap-
propriate gauge invariant theory to describe most collec-
tive and long range effects. On the other hand, kinetic the-
ories provide the best method to describe a near equilib-
rium situation in the small coupling constant regime. Far
from equilibrium and/or at large coupling constant other
techniques need to be developed. A promising candidate
is the 2PI effective action method. Unfortunately, prac-
tical calculations necessitate the use of approximate ver-
sions of the exact 2PI effective action. The approximated,
or truncated, 2PI effective action is simply a Schwinger–
Dyson resummation of the two-point function. Without
further resummation for the vertex functions, this resum-
mation necessarily leads to gauge dependent results for
most physical quantities.

The study of the gauge dependence of functional meth-
ods in quantum field theory has a long history. One of the
first contributions was made by Nielsen [1] who showed
that the explicit dependence of the 1PI effective potential
on the gauge parameter is compensated for by the gauge
parameter dependence of the expectation value, and that
the effective potential is gauge parameter independent. In
[2,3] a general functional formalism was used to derived
the gauge dependence of the associated n-point functions.
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These results were then used to address the gauge fixing
dependence of the one loop QCD plasma damping rate.

In this paper we derive an expression for the gauge
fixing dependence of the exact, off-shell 2PI effective ac-
tion for any gauge fixing function that has an invertible
Faddeev–Popov matrix. Using this expression for the ex-
act effective action we will analyze the gauge dependence
of the truncated effective action and show that the gauge
dependence always occurs at higher order, within any self-
consistent truncation scheme. This verifies the expectation
that, in complete analogy with the 1PI formalism, gauge
invariance problems that occur in specific calculations us-
ing the 2PI formalism should ultimately be traceable to an
inconsistency in the approximation scheme. In addition,
we will show that the method we use is easily generalized
to the case of background field gauges. The background
field gauge is of interest because of the recent results of
Mottola [4]. Mottola suggested a modified form of the 2PI
effective action in which Ward identities for background
and quantum gauge fields are both satisfied, under certain
conditions. We note that the leading order gauge invari-
ance of the truncated effective action has already been
obtained by a different method in [5].

This paper is organized as follows. In Sect. 2 we discuss
gauge dependence in the context of the 1PI effective ac-
tion. In Sect. 3.1 we review the 2PI formalism. In Sect. 3.2
we derive the 2PI Nielson identities. In Sect. 4 we discuss
the circumstances under which truncated 2PI equations
can be expected to lead to gauge dependent results for
physical quantities. In Sect. 5 we look at the background
field gauge and in Sect. 6 we present some conclusions. The
connection between our result and that of [5] is discussed
in the appendix.

Throughout this paper we use the compact notation
of DeWitt [9]. A single latin index of the form {i, j, · · · }
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indicates the discrete group and Lorentz indices, and
the continuous space-time variable. For example, a gauge
field which would normally be written Aa

µ(x) becomes φi.
Greek indices of the form {α, β, · · · } indicate discrete
group indices and space-time variables. For example, the
Lorentz gauge condition, which would normally be written
F a(x) = ∂µAa

µ(x) becomes Fα. The summation conven-
tion is used throughout and is extended to include inte-
gration over continuous variables.

2 The 1PI effective action

2.1 Generalities

We start from the partition function

Z1PI[J ] =
∫

Dϕ Det |Mαβ | exp
[
i
(
I + J iϕi

) ]
,

I = S + Sgf , (1)

where S is the matter and gauge field action. The gauge
fixing is set by the action Sgf = 1

2FαFα. The matrix Mαβ

is the Faddeev–Popov operator

Mα
β =

δFα[ϕ]
δϕi

Di
β [ϕ], (2)

and the functions Di
β(ϕ) represent a complete and inde-

pendent set of generators of the local gauge transforma-
tion. The only restriction on the gauge fixing condition
Fα[ϕ] is that the Faddeev–Popov matrix be invertible: we
define the ghost propagator by

MαβGβγ = −δαγ , (3)

where the δαγ in this equation is a Kronecker delta.
It is usually more convenient to work with the effective

action, instead of the partition function. We start from the
generator for connected Green functions

W [J ] = −i lnZ . (4)

The expectation value of the field is obtained from

φi = 〈ϕi〉 =
δW

δJi
. (5)

The effective action is defined by the Legendre transform

Γ [φ] = W [J ] − Jiφ
i. (6)

Using (5) we obtain the equations of motion,

δΓ [φ]
δφi

= −Ji . (7)

2.2 Nielsen identities and gauge dependence

The gauge dependence of the effective action can be ex-
plicitly calculated. We consider an infinitesimal change of
the gauge condition:

Fα → Fα + δFα (8)

The goal is to calculate the change produced in the gen-
erating functional

δW = W [Fα + δFα] − W [Fα] (9)

and to obtain the corresponding change in the effective
action by Legendre transforming. The calculation can
be done in a straightforward way by observing that the
change in the action I produced by (8) can be canceled
by a transformation

ϕ → ϕ + δϕ , (10)

which amounts to a shift of integration variables. We de-
fine δϕ through the equation

δ(F [ϕ]) = F (ϕ + δϕ) + δF (ϕ + δϕ) − F (ϕ)
:= 0 . (11)

Expanding to first order and introducing the notation
Fα

,i (ϕ) = δF α

δϕi
we have

Fα
,i (ϕ)δϕi = −δFα(ϕ) . (12)

The unique solution of (12) is

δϕi = Di
α[ϕ]Gα

β [ϕ]δF β [ϕ] . (13)

Since this expression has the form of a gauge transforma-
tion, the gauge fixed action S + 1

2 (F [ϕ])2 and the mea-
sure Dϕ Det|M | will be invariant under (8) and (10) and
(13). Thus, the only contribution to δΓ will come from
the source term. We obtain

δW
∣∣
J=const. = W [Fα + δFα] − W [Fα] = Ji〈δϕi〉,

δΓ
∣∣
J=const. = δW

∣∣
J=const. − Jiδφi,

δφi = 〈δϕi〉 + iJk〈δϕkϕi〉 − iJk〈δϕk〉φi . (14)

Combining we obtain the Nielsen identity for the 1PI ef-
fective action:

δΓ
∣∣
J=const. = −iΓ,iΓ,j〈(ϕi − φi)δϕj〉. (15)

Thus we find that on the mass shell (defined by Ji =
−Γ,i = 0) the effective action is gauge invariant.

We note that the variation of the effective action in
(15) is different from the expression found in (2.14) of
[3]. Although both results describe the variation of the
effective action caused by a change in the gauge condition,
(15) is obtained by holding the source J constant, and
(2.14) of [3] is obtained by holding the mean field φ =
φ[J, F ] constant by varying J . It is easy to obtain the
relationship between these quantities. We start with the
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generating function which we consider as a functional of
the gauge fixing function and the source, W [F, J ]. The
variation of the generating function is given by

δW =
δW

δF

∣∣∣
J=const.

· δF +
δW

δJ

∣∣∣
F=const.

· δJ

= δW
∣∣
J=const. + φ δJ. (16)

Subtracting δ(Jφ) from both sides and using the definition
(6) we have

δΓ = δW
∣∣
J=const. − Jδφ. (17)

Considering the effective action as a function of the gauge
fixing function and the expectation value of the field we
have

δΓ =
δΓ

δF

∣∣∣
φ=const.

· δF +
δΓ

δφ

∣∣∣
F=const.

· δφ

= δΓ
∣∣
φ=const. − Jδφ (18)

Comparing (17) and (18) we obtain

δΓ
∣∣
φ=const. = δW

∣∣
J=const. = −Γ,i〈δϕi〉, (19)

which can be compared with (15). Throughout this paper
we will consider variations obtained by holding sources
constant. For the 2PI case in particular, this seems to be
the more physical choice. The subscripts J = const. will
be dropped throughout.

3 The 2PI effective action

3.1 Generalities

The 2PI action functional [10] can be defined using path
integral methods following the technique used to construct
the standard 1PI effective action. A bilocal source K is
needed in addition to the standard local source J to define
the partition function Z[J, K]. The generating function of
the connected Green function W [J, K] = −i lnZ[J, K] is
also a two variable function:

Z[J, K] = eiW [J,K] =
∫

Dϕei(S[ϕ]+Jiϕ
i+ 1

2 ϕiK
ijϕj). (20)

The mean field φi and the connected two-point function
Gij are obtained from W [J, K] as

φi = 〈ϕi〉 =
δW

δJi
;

Gij = 〈ϕiϕj〉 − φiφj = i
δ2W

δ(iJi)δ(iJj)
.

(21)

Differentiating W [J, K] with respect to the bilocal source
gives the following relation between the mean field and
the connected two-point function:

Gij + φiφj = 2
δW

δKij
. (22)

The 2PI effective action functional is the Legendre trans-
formation of W [J, K] with respect to J and K:

Γ [φ, G] = W [J, K] − Jiφ
i − 1

2
Kij(φiφj + Gij) . (23)

Using (21) and (22) we obtain the following relations:

δΓ [φ, G]
δφi

= −Ji − Kijφ
j ;

δΓ [φ, G]
δGij

= −1
2
Kij . (24)

The effective action is usually written [10] in a more
convenient form which has a simple diagrammatical inter-
pretation in terms of 2PI diagrams

Γ [φ, G]

= S0[φ] + i
1
2

Tr
{
log
(
G−1)+ G

(
G−1

0 − G−1)}
+ Φ[φ, G]. (25)

where S0 is the free part of the action and G0 is the bare

two-point function
(
−iδ2S0[ϕ]/δϕδϕ

)−1
. The functional

Φ[φ, G] is the sum of all two-particle irreducible (2PI)
skeleton diagrams with bare vertices and dressed prop-
agators. In the absence of sources, the difference between
the inverse dressed and bare propagators is proportional
to the one-particle irreducible self energy

G−1 − G−1
0 = 2i

δΦ[φ, G]
δG

. (26)

This is the usual Schwinger–Dyson equation for the prop-
agator.

The above procedure can be generalized [11] to con-
struct NPI effective actions. For the NPI effective action
the skeleton diagrams are calculated using dressed prop-
agators as well as dressed N -point proper vertices; the
(N + 1)-point vertex is bare.

3.2 Off-shell gauge dependence

To study the gauge dependence of the 2PI effective action
we derive the corresponding Nielsen identities. For sim-
plicity, we consider a pure Yang–Mills theory. The parti-
tion function with a gauge fixing term F has the form,

Z[J, K] = eiW [J,K]

=
∫

Dϕ Det
∣∣∣∣δFα[ϕ]

δϕi
Di

β [ϕ]
∣∣∣∣ (27)

× exp i
(

SYM +
1
2
(F [ϕ])2 + J iϕi +

1
2
ϕiK

ijϕj

)
.

We calculate the variation of the generating functional
W [J, K] under the transformations (8) and (10) and (13).
As in the case of the 1PI effective action, the measure and
the gauge fixed action are invariant which means that the
only non-zero contribution comes from the source terms.
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The sources themselves (J, K) are viewed as the indepen-
dent variables, and are held constant. We obtain

δW [J, K] = W [F + δF ] − W [F ] (28)

= Ji〈δϕi〉 +
Kij

2
[〈δϕiϕj〉 + 〈ϕiδϕj〉] .

The variation of the effective action is given by

δΓ = δW − Jiδφ − Kij

2
δ〈ϕiϕj〉 . (29)

Using the functional definition of expectation values, we
obtain

δW = 〈T 〉,
δφi = 〈δϕi〉 + i〈ϕiT 〉 − iφi〈T 〉, (30)
δ〈ϕiϕj〉 = 〈ϕiδϕj + δϕiϕj〉 + i〈ϕiϕjT 〉 − i〈ϕiϕj〉〈T 〉,

where we have defined

T = Jiδϕi +
1
2
Kij(ϕiδϕj + δϕiϕj). (31)

Combining these results and using (24) we find

δΓ = −i
〈(

δΓ

δφi
δϕi +

δΓ

δGij
(δϕiξj + δϕjξi)

)
×
(

δΓ

δφi
ξi +

δΓ

δGij
G̃ij

)〉
, (32)

where ξi = ϕi −φi and G̃ij = ξiξj −Gij . Using (24) we see
that the full 2PI effective action is gauge invariant on-shell.
Of course, this conclusion is obvious, since the 2PI effective
action calculated to all orders is exactly equivalent to the
1PI effective action. One way to see this point is to note
that the bilocal source K does not play an active role in
(21). We could set K to zero before differentiating, which
shows explicitly that the 2PI Gij is the same as the 1PI
Gij .

Note that the variation of the 2PI effective action at
constant mean field and propagator can be obtained fol-
lowing the method that was used for the 1PI effective ac-
tion. We find

(δΓ ) |{φ, G}=const. = (δW ) |{J, K}=const. . (33)

4 Truncation

All of the preceding calculations are valid when one works
with the full effective action (1PI or 2PI). In practice, of
course, we never calculate the full effective action: we use
an expansion scheme and truncate at some finite order.
When we work with a truncated 2PI effective action, the
non-perturbative nature of the 2PI formalism gives rise
to problems with gauge invariance. In fact, it is easy to
see in advance that this problem will occur. The 2PI for-
malism involves the use of resummed propagators. When
calculating at finite orders, one effectively resums a spe-
cific class of topologies. Since the Ward identities involve

the cancellation of contributions from different topologies,
we expect that a resummation that involves only one type
of topology will give rise to violations of the Ward iden-
tities. In this paper we study the gauge invariance of the
effective action. The issue of the Ward identities will be
left for a future publication [12].

We show below that both the 1PI and 2PI effective
actions are gauge invariant on-shell to arbitrary order in
any self-consistent expansion scheme.

4.1 1PI

First, consider calculating the full 1PI effective action, i.e.
to all orders in the expansion parameter. The mass shell
condition is obtained from (7) with the source set to zero:
Γ,i = 0. Substituting into (15) we have δΓ1PI = 0 which
tells us that the full 1PI effective action is gauge invari-
ant on-shell. We discuss below the truncation of the full
1PI effective action. For definiteness, we consider a loop
expansion. Calculating up to L loops gives the truncated
effective action. The full effective action is the sum of the
truncated effective action and the remainder:

Γ = ΓL + Γex, (34)

where ΓL is calculated up to g2L−2 and Γex ∼ g2L. When
using a truncated effective action, the on-shell condition is
replaced by an approximate on-shell condition determined
from the truncated effective action by

δΓL[φ]
δφ

∣∣∣
φ0

L

= 0. (35)

Using this approximate on-shell condition we have

δΓ

δφ

∣∣∣
φ0

L

=
δΓex

δφ

∣∣∣
φ0

L

∼ Γex ∼ g2L. (36)

Substituting into (15) we obtain

δ(ΓL + Γex) ∼ g4L, (37)

which gives

δΓL ∼ δΓex + O(g4L) ∼ Γex + O(g4L) ∼ g2L. (38)

Thus we obtain

δΓL ∼ g2ΓL, (39)

which shows that the gauge dependence of the on-shell
effective action always occurs at higher order than the
order of truncation.1

1 The variation of the effective action at constant φ can be
evaluated using (19). In this case the variation of the effective
action is linear in the source. Using the approximate on-shell
condition we obtain

(δΓ )φ=const. ∼ δΓ

δφ

∣
∣
φ0

L
∼ g2L

which shows that the gauge variation of total effective action is
more weakly suppressed when the expectation value of the field
is held constant. Note however that the result for the truncated
effective action (39) still holds.
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It is important to note that the above formal analysis
implicitly assumes that the solution of the truncated equa-
tion of motion (35) remains within the range of validity
of the approximation implied by the truncation. In other
words, it is possible that Γex, evaluated at the approxi-
mate solution φ0, contains terms of the same order as ΓL.
In this case, the truncated effective action, and all phys-
ical quantities derived from it, can be gauge dependent.
Such a gauge dependence has been observed many times
in the literature (the Coleman–Weinberg mechanism [6,7],
self-consistent dimensional reduction [8], and the one loop
plasmon damping rate [2,3]). The gauge dependence in
all of these cases is a manifestation of an inconsistent ap-
proximation scheme, since the gauge dependence identities
guarantee that physical quantities will be gauge indepen-
dent when calculated within a self-consistent perturbative
procedure.2

4.2 2PI

Now consider the full 2PI effective action (calculated to
all orders). In this case, the conclusion we draw from (32)
is the same as the conclusion from (15): on the mass shell,
defined by δΓ/δφi = δΓ/δGij = 0, the full 2PI effective
action is gauge invariant. As mentioned earlier, this con-
clusion is obvious, since the 2PI effective action calculated
to all orders is exactly equivalent to the 1PI effective ac-
tion. Problems arise when we try to work with a truncated
effective action. As in the 1PI case, we write the full effec-
tive action as the sum of the truncated effective action and
the remainder as in (34). The approximate on-shell con-
dition is determined from the truncated effective action
by

δΓL

δφ

∣∣∣∣
φ0

L,G0
L

= 0 ;
δΓL

δG

∣∣∣∣
φ0

L,G0
L

= 0. (40)

Now let us consider performing a perturbative expan-
sion of the type described in Sect. 4.1 on (32). Using (40)
we have

δΓ

δφ

∣∣∣∣
φ0

L,G0
L

=
δΓex

δφ

∣∣∣∣
φ0

L,G0
L

∼ Γex ∼ g2L. (41)

Note that in (41) we have assumed that the effective action
Γex and its derivative are of the same order in the expan-
sion. In fact, it is not clear that this is the case, since
the variable that we are differentiating with respect to is
a non-perturbative quantity, however, it seems reasonable
that differentiation will not increase the order of Γex. We

2 Note that a self-consistent perturbative procedure does not
necessarily guarantee accuracy. A self-consistent perturbative
expansion is one in which an expansion can be carried out in
some parameter (such as � or a coupling constant g), in such a
way that there is no mixing of orders in the expansion. If this
self-consistent perturbative expansion exists, the existence of
the gauge dependence identities ensures gauge independence
of the on-shell effective action order by order, irrespective of
the relative magnitude of each term in the expansion.

also note that, as in the 1PI case, it is essential that the
perturbative procedure is self-consistent, or that the quan-
tity that has been dropped (δΓex(φ0

L, G0
l )) is higher order

in g than the quantity that is kept (δΓL(φ0
L, G0

l )). Be-
cause of the inherent non-perturbative nature of the 2PI
formalism, this possible mixing of orders is more difficult
to monitor and control than in the usual 1PI case. If we
assume for the moment that the integrity of the loop ex-
pansion is not fundamentally violated, and substitute into
(32), we obtain as before

δ(ΓL + Γex) ∼ g4L, (42)

which gives

δΓL ∼ δΓex + O(g4L) ∼ Γex + O(g4L) ∼ g2L. (43)

Thus we obtain the same result as in the 1PI case:

δΓL ∼ g2ΓL, (44)

which shows that the gauge dependence of the on-shell ef-
fective action always formally occurs at higher order than
the order of truncation, just as for the 1PI case.

5 The background gauge

In this section we review the background field gauge tech-
nique. A more detailed description can be found in [13].
For simplicity, we consider a pure Yang–Mills theory. We
write the gauge field as the sum of two pieces:

gauge field = Aµ + Qµ, (45)

where Aµ is a background gauge field and Qµ is a quantum
gauge field which will be the variable of integration in
the functional integral. We add a gauge fixing term (the
“background field gauge”) that breaks gauge invariance in
Qµ but not Aµ. Also, we couple only Qµ to the sources.
This procedure allows us to calculate quantum corrections
and keep explicit gauge invariance in the background field
variable.

We define our notation as follows:

[T a, T b] = ifabcT
c ; ifabc = (T b)ac,

Dac
µ = δac∂µ + gfabcA

b
µ,

Dµ = ∂µ − igAa
µTa = ∂µ − igAµ,

−igFµν = [Dµ, Dν ],

F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcA

b
µAc

ν , (46)

where Ta are the generators of the Lie algebra of the gauge
group.

The partition function is defined as

Z[J, K, A]

=
∫

[dQ]det
∣∣∣∣δGa

δαb

∣∣∣∣
× exp

[
i
∫

d4x

(
LYM(A + Q) − 1

2ξ
(Ga)2
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+ Ja
µ(x)Qµ

a(x)
)

+
i
2

∫
d4x

∫
d4y Kab

µν(x, y)Qµ
a(x)Qν

b (y)
]

. (47)

We define the generating functional for connected dia-
grams, and the effective action, in the usual way:

W [J, K, A] = −ilnZ[J, K, A],

Γ [Q̄, Ḡ, A] = W [J, K, A] −
∫

d4xJa
µQ̄µ

a

−
∫

d4xd4y
1
2
Kµν(Q̄µQ̄ν + Ḡµν),

Q̄a
µ =

δW

δJµ
a

; Ḡµν = i
δ2W

δ(iJµ)δ(iJν)
. (48)

We use the background field gauge condition

Ga = ∂µQµ
a + fabcA

b
µQµ

c = (DµQµ)a. (49)

Note that the propagator Ḡµν should not be confused with
the gauge fixing functional Ga. We consider the transfor-
mation

Aa
µ → Aa

µ + δAa
µ ; δAa

µ = Dab
µ αb,

Qa
µ → Qa

µ + δQa
µ ; δQa

µ = fabcQ
b
µαc. (50)

Note that the transformation on A has the form of a gauge
transformation. The transformation on Q is just a shift of
the integration variable. It is straightforward to see that
(50) gives

δ(Aa
µ + Qa

µ) = D̃ab
µ αc ; D̃µ = ∂µ − ig(Aµ + Qµ),

δ(Ga) = fabcG
bαc, (51)

which means that both the Yang–Mills Lagrangian and
the gauge fixing term remain invariant under (50).

Combining these results we see that when the trans-
formation (50) is performed on the generating functional
or the effective action, the change that is produced comes
only from the source terms. Note that this situation is
exactly analogous to the situation we had previously. In
Sects. 2 and 3 we shifted the gauge fixing function and
performed a simultaneous shift of the integration variable
so that the changes to the generating function and the
effective action came only from the source terms. In this
case, the shift of the gauge fixing function is generated by
a shift in the background field, as shown in (51). The cal-
culation of the Nielsen identity follows the same procedure
as before.

We can calculate the Nielsen identity for Γ [Q̄, Ḡ, A]
by following the procedure in Sect. 3.2. We perform the
change of variables (50) and obtain

δΓ = Γ [Q̄, Ḡ, A + δA] − Γ [Q̄, Ḡ, A]

= −i
〈(

δΓ

δφi
δQi +

δΓ

δGij
(δQiξj

A + δQjξi
A)
)

×
(

δΓ

δφi
ξi
A +

δΓ

δGij
A

G̃ij
A

)〉
, (52)

where ξi
A = Qi − Q̄i[A], and G̃ij

A = ξi
Aξj

A − Ḡij [A]. As be-
fore, we find that the full effective action is gauge invariant
on-shell, and the truncated effective action is gauge invari-
ant to leading order.

6 Conclusions

We have derived the gauge fixing identities for the 2PI ef-
fective action, valid for any gauge fixing function with an
invertible Faddeev–Popov matrix. These identities were
first derived by Arrizabalaga and Smit [5] using a differ-
ent formalism. As expected, these identities prove that
the 2PI effective action is invariant under infinitesimal
gauge variations, on-shell, to arbitrary order in any self-
consistent expansion scheme. We have also considered the
background field gauge and shown that the effective action
is invariant under infinitesimal shifts on the background
field, on-shell, to arbitrary order in any expansion scheme.

We note that the derivations of the gauge fixing identi-
ties for the 1PI and 2PI formalisms are virtually identical
from a mathematical point of view. This similarity is unex-
pected, in light of the fact that we expect gauge invariance
problems of a completely different nature to arise in the
2PI theory. The 2PI theory is inherently non-perturbative,
and involves not just the mean field φi but also the two-
point function Gij , which are a priori independent, and
must be solved for simultaneously. As a consequence, the
2PI theory preferentially resums specific topologies, a pro-
cedure that we expect will lead to violations of Ward iden-
tities. Of course, since Ward identities reflect the quantum
symmetries of the Green functions, such violations are due
to truncations and would be absent if exact calculations
were possible.

One possible problem with the truncated 2PI effec-
tive action is the fact that the perturbative procedure is
not necessarily self-consistent, in the sense discussed in
Sects. 4.1 and 4.2. It is also possible that there is a fun-
damental problem associated with taking the Legendre
transform of a truncated theory. In general, the Legen-
dre transform is defined functionally as the transforma-
tion that converts the untruncated generating functional
to the untruncated effective action. The 1PI theory is in-
herently perturbative and thus there is no problem with
the Legendre transform for truncated versions of the the-
ory. However, in the case of the 2PI theory, it is possible
that problems arise when transforming the truncated the-
ory. In this case, the minimum of the effective potential
would not necessarily correspond to the expectation value
of the generating functional, and the interpretation of the
Ward identities obtained from the effective action would
not be straightforward.

Appendix A: BRST transformation

Our result agrees with the result of [5] which was obtained
using the BRST method. The basic strategy of the BRST
method is to exploit the fact that the gauge fixed theory
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still possesses a global symmetry called the BRST sym-
metry. This symmetry is made explicit by using a repre-
sentation of the partition function that is different from
(27). The gauge fixing term has the form

SGF =
∫

d4x

(
−c̄αMαβcβ + BαVα − 1

2
χBαBα

)
,

(A.1)

where cα and c̄α are the ghost fields, Bα is the auxil-
iary field, and Vα is the gauge fixing condition. Integra-
tion over the ghost fields produces the determinant of the
Faddeev–Popov matrix, as in (27), and integration over
the auxiliary field produces a gauge fixing term of the
form 1

2χVαVα. Comparing with (27) we have

Vα =
√

χFα. (A.2)

To make further progress one must specialize to the co-
variant gauge: Vα → ∂µAa

µ(x). The gauge fixed action
SYM + SGF is invariant under the BRST transforma-
tion: δBRSTAa

µ = ε(Dµc)a, δBRSTca = iεg(Taca)(Tbc
b),

δBRSTc̄a = −εBa, and δBRSTBa = 0, where ε is an in-
finitesimal global anti-commuting parameter. One obtains

SGF = QBRST

∫
d4x

(
1
2
χc̄αBα − c̄αV α

)
:= QBRSTΨ, (A.3)

where QBRST is the BRST nilpotent charge defined as
δBRSTϕ = εQBRSTϕ. Calculating the variation of the ef-
fective action under the BRST transformation one obtains

δΓBRST =
1
2

〈
δΨQBRST

(
δΓ

δφi
ξi +

δΓ1

δGij
G̃ij

)2
〉

, (A.4)

with

δΨ = −
∫

d4x

(
c̄αδVα[A] − 1

2
δχ c̄αBα

)
. (A.5)

It is straightforward to see that this result is equivalent to
ours. We take Vα =

√
χFα which gives

δF =
1√
χ

δV − 1
2

δχ

χ
√

χ
V. (A.6)

We integrate over the Gaussian B field, and over the ghost
fields using∫

DcDc̄cic̄je−(c̄Mc) = [M−1]ijdetM . (A.7)

We find that the variation δΓBRST is proportional to our
effective action variation δΓ .
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